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ABSTRACT: A four-layer fuzzy neural network (FNN) model combining particle swarm optimization (PSO) algorithm and clustering

method is proposed to predict the solubility of gases in polymers, hereafter called the CPSO-FNN, which combined fuzzy theory’s

better adaptive ability, neural network’s capability of nonlinear and PSO algorithm’s global search ability. In this article, the CPSO-

FNN model has been employed to investigate solubility of CO2 in polystyrene, N2 in polystyrene, and CO2 in polypropylene, respec-

tively. Results obtained in this work indicate that the proposed CPSO-FNN is an effective method for the prediction of gases solubil-

ity in polymers. Meanwhile, compared with traditional FNN, this method shows a better performance on predicting gases solubility

in polymers. The values of average relative deviation, squared correlation coefficient (R2) and standard deviation are 0.135, 0.9936,

and 0.0302, respectively. The statistical data demonstrate that the CPSO-FNN has an outstanding prediction accuracy and an excellent

correlation between prediction values and experimental data. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 129: 3297–3303, 2013
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INTRODUCTION

Solubility is one of the most important physicochemical prop-

erties, which determines the compatibility of blending system.

Scrutiny of the literature1–3 reveals the great interest that too

many researchers have focused their attention on the solubility

of gases in polymer melts. The data of solubility of gases in

polymers obtained by experiment or prediction are essential to

the optimal design process.4 Experimental methods mainly

include phase separation method,5 pressure decay method,6

gravimetric method,1,2,7 volumetric method,8,9 chromatographic

method,5 etc. However, some experiments are difficult to

implement because of many restricted conditions for equip-

ment and techniques. Considering it is costly and time con-

suming to measure in laboratory, there is a strong demand to

develop friendly, effective, accurate, and reliable methods that

can predict the solubility of gas–polymer compound. Tradi-

tional method for prediction of gas solubility in polymer

mainly consists of perturbed-hard chain theory,10 lattice-fluid

theories,5,8 cubic equation of states,11 etc. Unfortunately, most

traditional methods have some shortcomings such as large

observed deviations compared with the results that obtained

from experiment.4,10

Recent years, the interdiscipline of information science and

intelligent technology has a broad application perspective.4,12,13

With the popularization of artificial neural networks (ANN),

the determination of ANN structure, parameters and bias

becomes the most crucial factors because the training process of

ANN could be considered as a classical optimization problem.12

Recently, researchers discovered that many intelligent algorithms

such as genetic algorithm,13 simulated annealing algorithm,14

fuzzy logic theory,15 gravitational search algorithm,16 wavelet

analysis,17 ant colony optimization algorithm,18 particle swarm

optimization algorithm (PSO),12,19–21 chaos theory,22 and so on,

can all be used for this determination. Therefore, ANN com-

bined with intelligent optimization algorithms namely hybrid

neural network has become one of the most active subject.

So far as solubility of gases in polymers is concerned, it is

affected by temperature, pressure, and sometimes it can also be

affected by the interactions with the groups of the macromolecu-

lar chains.23 As a result of the nonlinear relationship of these
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factors, traditional methods of prediction of gases solubility in

polymers are insufficient to meet the requirements; therefore,

there is a strong demand to develop an effective and accurate

prediction method for gases solubility in polymers.1,8 Bakhba-

khi10 presented a comparison between ANN and equation of

state for the prediction of solubility of 2-naphthol in ternary sys-

tems and demonstrated that the ANN method was a powerful

approach with better accuracy. Recently, some literatures have

mentioned the using of fuzzy theory in developing statistical esti-

mator.24,25 Khajeh and Modarress26 developed adaptive neuro-

fuzzy inference system (ANFIS) and Radial Basis Function Neural

Network for solubility prediction of gases in polystyrene (PS)

and indicated that the ANFIS had better accuracy by comparing

with the classical methods. At the same time, PSO has become a

popular optimizer and has been widely applied in solving practi-

cal problem.19 Ahmadi12 proposed a feed-forward ANN model

optimized by unified PSO algorithm to predict asphaltene precip-

itation and indicated that the proposed model was superior.

Although these works have achieved better prediction accuracy,

there are still some defects in some case. For example, the tradi-

tional ANN methods take a long time for training and it is easy

to get into the local optima.27 As far as the ANFIS is concerned

particularly, the ANFIS gains an advantage in modeling nonlin-

ear functions and is faster in convergence when compared to

the other fuzzy models,26 but when expanding the search space

or increasing the fuzzy rule, or when the prerequisites of model

parameters are indeterminate, the learning ability of ANFIS is

still unsatisfactory.

Therefore, in this article, a faster, better learning ability and

more satisfied modeling has been proposed for the solubility

prediction of gases in polymers in a wide range of temperature

and pressure, which involves technologies of neural network,

fuzzy theory, PSO algorithm, and k-means clustering method,

hereafter called the CPSO-FNN method. In the CPSO-FNN

method, fuzzy neural network (FNN) trained by PSO algorithm

has an excellent convergence rate; the k-means clustering

method uses to determine the number of clusters with the pur-

pose of improving the learning efficiency. The CPSO-FNN

method effectively improves the shortcomings of traditional

method of time consuming and easy to get into local optima.

The prediction accuracy and reliability of the proposed model

were checked based on the experimental data obtained from lit-

eratures. The comparison between different neural networks was

carried out in detail to reveal the advantage of the proposed

model.

THEORY AND ARCHITECTURE

The CPSO-FNN model is a hybrid system combining clustering

method, PSO algorithm, fuzzy logic theory, and neural net-

works, which is considered as a special kind of neural networks.

In CPSO-FNN model, fuzzy rules are generated in FNN, and

then in order to avoid the curse of dimensionality as the num-

ber of input dimension gets larger,28 a clustering method for

reducing the number of fuzzy rules has been proposed. The

PSO algorithm has been employed to train the FNN so as to

optimize the structure and improve the learning efficiency.

Fuzzy Neural Networks

FNN is a hybrid system combining the theories of fuzzy theory

and ANN, which can make use of easy interpretability of fuzzy

theory as well as superior learning ability and selfadaptive capa-

bility of ANN. It has a broad application in areas of intelligent

control, signal processing, prediction and forecasting, nonlinear

system identification, intelligent optimization, pattern recogni-

tion, etc.15,29 To get an intuitional understanding of FNN,

Figure 1 shows a highly simplified schematic diagram of the

structure of a four-layer FNN.29

Layer 1: Input layer. In this layer, each node represents an input

variable. The node only transmits input values to the node in

layer 2.

net1j ¼ x1i ; j ¼ i; y1j ¼ net1j (1)

where netkj is the network input of jth node in kth layer; xki is

the ith input in kth layer; yki is the output of jth node in kth
layer.

Layer 2: Fuzzification layer or membership function layer.

Nodes in layer 2 are arranged into some groups, each group

representing the if-part of fuzzy rule. Each node computes the

value of membership function.

net2j ¼ �ðx2i �mimÞ2

ðrimÞ2
; j ¼ 6ði � 1Þ þm; y2j ¼ expðnet2j Þ (2)

where mim and rim are the mean deviation and standard devia-

tion of the ith input of the mth fuzzy subset.

Layer 3: Fuzzy inference layer or rule layer. The number of

nodes in this layer is equal to the number of fuzzy sets. The

automatic k-means clustering method, which tends to define

the number of fuzzy rules based on the closeness of data points

has been employed here. It is a method of cluster analysis that

Figure 1. Structure of a four-layer FNN.
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aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean.28,30

In FNN, given a set of fuzzy rules (x1, x2, …, xn), where each

rule replaces a node, automatic k-means clustering aims to par-

tition the n rules into k fuzzy sets (k � n) S ¼ {S1, S2,…, Sk},

so as to minimize the within-cluster sum of squares:31

argmin
S

Xk
i¼1

X
xj2si

jj xj � ui jj2 (3)

where li is the mean of points in Si:

net3j ¼ x3i x
3
m; j ¼ 6ði � 1Þ þ ðm� 6Þ; y3j ¼

net3i
PM
i¼1

net3i

(4)

Layer 4: Defuzzification layer or output layer. Nodes in this

layer perform defuzzification. Output is the prediction value of

FNN:

net3o ¼
XM
i¼1

hix
4
i ; y

4
o ¼ net4o (5)

where hi is the weight and y4o is the output of FNN.

PSO Algorithm

PSO is an evolutionary computation algorithm inspired by

social behavior and collective behavior of bird flocking or fish

schooling, and swarm theory to yield the best of the characteris-

tics among the population.12,20,29 The search of PSO algorithm

is based on the orientation by tracing a local variable (Plbest)

that is each particle’s best position in its search history, and

tracing a global variable (Pgbest) that is all particles’ best posi-

tion in their history; it can rapidly arrive around the global

optimum.19,21

The PSO algorithm works by initializing a flock of birds ran-

domly in the search space. Every bird is called as a particle rep-

resented as a potential solution, flies through the search space

with a certain velocity following the current optimum particles

and finds the global best position after some iteration. Each

particle can adjust its velocity and position vector based on its

momentum and the influence of its best position (Plbest) and

the best position of its neighbors (Pgbest).12,16,20 The position

and velocity are updated using the equations as follows:

vkþ1
i;d ¼ vki;d þ c1 randðpki;d � xki;dÞ þ c2 randðpkg ;d � xki;dÞ (6)

xkþ1
i;d ¼ xki;d þ vkþ1

i;d (7)

where i ¼ 1,…,m; xki;d and vki;d are the position and velocity of

ith particle at d-dimensional and the kth iteration; c1 and c2 are

the acceleration constants with positive values, called training

factor too; pki;d is the best position of ith particle in d-dimen-

sional, whereas pkg ;d is the global best position.

Architecture and Evaluation

Input and output parameters of neural network should be

defined for solving the practical problem.13,32,33 As far as ANN

is concerned, the required parameters include layers and the

number of nodes in every layer. As a result the input and output

parameters can be extracted from experimental data.34,35 In this

article, the CPSO-FNN model with four layers was designed for

the prediction of gases solubility in polymers in a wide range of

temperature and pressure. Therefore, two process variables (T,

P) have been chosen to develop the prediction model, where T

is the temperature and P is the pressure.

All experimental data for this model were obtained from litera-

tures.3,6,7,9,36–39 After comprehensive evaluation of the data we

gathered, after removing the redundant and invalid data points,

a database containing 283 data points was finally established for

the CPSO-FNN model. Table 1 shows the sources of statistical

data utilized in the present article.

The available data were divided into three categories by different

systems of gases and polymers, which are CO2 in PS, N2 in PS,

Table I. Experimental Data in This Article

Polymer Gas Temperature (K) Pressure (Mpa) Solubility (g/g) Data points Reference

PS CO2 338.22–362.50 3.710–24.650 0.03714–0.19110 15 3

372.20–383.22 2.068–42.810 0.01231–0.16056 34 3,6,7,37

402.51–413.20 5.140–20.036 0.01462–0.20190 16 3,6

423.15–473.15 2.159–20.151 0.00688–0.06870 37 6,7,37

PS N2 170.00–313.20 3.110–69.470 0.00217–0.02144 23 3,36,38

332.20–333.23 3.050–50.110 0.00109–0.02077 21 3,36

352.20–373.20 2.989–62.500 0.00106–0.01813 32 3,6,36

413.20–453.20 6.452–18.011 0.00334–0.00983 13 6

PP CO2 373.15–373.20 2.930–12.550 0.02050–0.10860 21 9,39

393.20–423.15 4.120–14.960 0.02260–0.10050 25 9,39

432.20–453.20 4.960–24.910 0.03230–0.26170 30 36,37,39

464.20–483.70 4.970–24.910 0.03020–0.24290 16 36,37,39

Total 170.00–483.70 2.068–69.470 283
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and CO2 in PP, and then the data of each category was divided

into three subsets including training set, validation set, and test-

ing set. The training set is used to generate and train the

CPSO-FNN model, the validation set is applied to verify the

reliability of the model, and the testing set is used to test the

prediction capability of the proposed model. The random

method was proposed for the process of division of the data

into subsets. In order to improve the effect of training, the

training set had 70% of the data points; the validation and test

sets had 15% data set each. In other words, in the 283 data

points’ database, 199 data points were employed to train and

the rest were employed to validate and test.

The predictability of the model was evaluated by calculating av-

erage relative deviation (ARD), standard deviation (SD), and

squared correlation coefficient (R2).4,15 The ARD and SD are

defined as

ARD ¼ 1

N

XN
i¼1

PreðiÞ � ExpðiÞj j
ExpðiÞ 100% (8)

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi � x0Þ2
vuut (9)

where N is the number of data points; Pre(i) is the predicted

value of model and Exp(i) is the experimental data; the x
0
is

the average of the N data points.

RESULTS AND DISCUSSION

In this article, a four-layer neural network model based on fuzzy

theory, PSO algorithm, and clustering method was proposed to

predict the solubility of gases in polymers. For this purpose, we

have built a 2-12-36-1 CPSO-FNN model, which consisted of

one input layer with two nodes that represented temperature

and pressure, one fuzzification layer with 12 nodes, one fuzzy

inference layer with 36 nodes, and one defuzzification layer

with one node represented the solubility.

The original experimental data were extracted from literature

and shown in Table I, consisting the data of two gases (carbon

dioxide/CO2 and nitrogen/N2) in PS and one gas (CO2) in

polypropylene (PP). That could also mean the database was di-

vided into three categories by different polymers and gases,

which were CO2 in PS, N2 in PS, and CO2 in PP. The CPSO-

FNN model had been employed to investigate their solution

behavior of the three categories in this article. In Figures 2–4,

the prediction of solubility of CO2 in PS, N2 in PS, and CO2 in

PP are plotted against the experimental data for the training,

validation, and testing sets. In these figures, lines show the ideal

modeling that the prediction values equal to the experimental

data, whereas the asterisk, x shape, and square are the correla-

tions between experimental data and prediction values in train-

ing, validation, and testing sets, respectively.

As shown in these figures, the outputs of the CPSO-FNN model

show a fair agreement with the experimental data, no matter

the training, the validation, or the testing sets. That could also

mean the CPSO-FNN model has an excellent prediction capa-

bility and has a good correlation with the experimental data.

Particularly, for CO2 in PP, as observed in Figure 4, shows a

better correlation between the prediction and the experiment,

the close proximity of the best linear fit to the perfect fit. These

results also show the superiority of the prediction of solubility

by CPSO-FNN.

The simulation performance of the CPSO-FNN model was also

evaluated by comparing with the traditional FNN model that

established beforehand based on calculating ARD, SD, and R2. It

is certain that a fair comparison is achieved when these models

are based on the same testing data. Therefore, another testing

database with three subsets consisted of CO2 in PS, N2 in PS,

and CO2 in PP has been established by random method, each

Figure 2. Predicted solubility of CO2 in PS by CPSO-FNN vs. experimen-

tal data. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 3. Predicted solubility of N2 in PS by CPSO-FNN vs. experimental

data. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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subset contained 20 data points. The testing database was

employed in this comparison. Figures 5–7 show the plots

between the experimental and prediction solubility of CO2 in

PS, N2 in PS, and CO2 in PP by FNN and CPSO-FNN models.

The statistical results of the two prediction models are com-

pared in Table II.

Figures 5–7 and Table II reveal that, in the same testing set, the

CPSO-FNN model has better performance with higher accuracy

than the traditional FNN model, no matter for CO2 in PS, N2

in PS, or CO2 in PP.

In order to show the predictivity of the present algorithm

model, the results in this article were compared with the data

obtained from associated literatures. So far as time of training is

concerned, the traditional feed-forward multilayer perceptron

ANN proposed by Lashkarbolooki et al.27 needed about 500

iterations, whereas the model proposed in this article needed

about 160 under the same training error. The ARD for ANFIS

and Radial Basis Function Neural Network proposed by Khajeh

and Modarress were 0.2543 and 0.6498 for CO2 in PS,26 whereas

the ARD was 0.133 in this article; The R2 for unified PSO

method proposed by Ahmadi12 was 0.99493, whereas the best

value of R2 was 0.9975 in this article. Obviously, the compari-

son also shows that the CPSO-FNN has better performance

with higher accuracy and has better correlation and robustness.

Figure 4. Predicted solubility of CO2 in PP by CPSO-FNN vs. experimen-

tal data. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 5. Comparison between experiment and prediction of CO2 in PS.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6. Comparison between experiment and prediction of N2 in PS.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 7. Comparison between experiment and prediction of CO2 in PP.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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The major reasons for the superiority of the CPSO-FNN model

should owe to the proposed training algorithm. The perform-

ance advantages of the training algorithm includes the FNN’s

superior learning rate, higher inference, and decision ability, the

PSO algorithm’s keen capability in global search and optimum

performance for optimizing the structure of FNN, and the auto-

matic k-means clustering method’s keen cluster ability for deter-

mining the number of clusters.

CONCLUSIONS

This article presents a prediction model, which aims to replace

the costly and time-consuming measurement in laboratory. The

CPSO-FNN model combining the technologies of clustering

method, PSO algorithm, and fuzzy logic theory has developed

to predict the solubility of two gases in polymers. The perform-

ance of the CPSO-FNN model was evaluated based on calculat-

ing the ARD, R2, and SD. The results indicate that the CPSO-

FNN model is a reliable and accurate model for the solubility of

gases in polymers, and is a practicable method for the analysis

and design of polymer processing technology. This article shows

that the proposed modeling is supposed to have high applica-

tion value. In the future research works, we will follow-up on

this subject all the time and focus on how to apply this model

to solve more realistic problems.

NOMENCLATURE

ANN Artificial neural network

PSO Particle swarm optimization

FNN Fuzzy neural network

PS Polystyrene

PP Polypropylene

ARD Average relative deviation

R2 Squared correlation coefficient

SD Standard deviation
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